

569 Inadequate Immune Response Among Public Safety Workers Receiving Intradermal Vaccination Against Hepatitis B - United States, 1990-1991
572 Childhood Cancers - New Jersey, 1979-1985
579 Comparative Mortality of Two College Groups, 1945-1983

Epidemiologic Notes and Reports

Inadequate Immune Response Among Public Safety Workers Receiving Intradermal Vaccination Against Hepatitis B United States, 1990-1991

The Immunization Practices Advisory Committee (ACIP) recommends that hepatitis B vaccine be administered by the intramuscular (IM) route (1). However, since November 1990, public safety departments have reported to CDC at least four instances of poor immune response among public safety workers vaccinated against hepatitis B by the intradermal (ID) route of administration.

Report 1. In December 1990, the fire and police departments in Tuscaloosa, Alabama, contracted with a private company to have hepatitis B vaccine administered to all employees. The cost of vaccination was $\$ 100$ per employee; this fee included three doses of vaccine and postvaccination testing but did not include the costs of phlebotomy or additional doses of vaccine. All employees were vaccinated with 0.1 mL ($1 / 10$ the ACIP-recommended IM dose) of recombinant hepatitis B vaccine by the ID route at months 0,1 , and 6 ; postvaccination serum samples were obtained 4-6 weeks after the third dose had been administered.

A total of 226 employees were vaccinated; of these, 213 (94\%) were men. Forty-nine (22%) were aged $23-29$ years; 98 (43%), 30-39 years; and 79 (35%), $\geqslant 40$ years. The contractor reported that, of the 226 employees, 108 (48%) had adequate serologic responses* to the three-dose series. The contractor also reported that vaccinees <40 years of age were more likely to have responded adequately than those $\geqslant 40$ years of age (56% vs. $34 \% ; p<0.01$; chi-square test). The contractor offered to administer two additional doses by the ID route to nonresponders for $\$ 70$ per person, thereby increasing the potential cost of vaccination for all employees to an average of $\$ 137$ per vaccinee.

[^0]Intradermal Hepatitis B Vaccination - Continued
Report 2. During 1989, a public safety department in Fairhaven, Massachusetts, contracted with a private company to have public employees (including fire, police, and visiting nurse personnel) vaccinated with recombinant hepatitis B vaccine. The department reported that of 62 employees who were vaccinated, 30 (48%) adequately responded to three $0.1-\mathrm{mL}$ doses administered by the ID route. Of the 32 nonresponders, 31 (97%) developed protective levels of antibody to hepatitis B surface antigen (anti-HBs) after vaccination with an additional $1.0-\mathrm{mL}$ dose by the IM route. The average cost per employee for the vaccine program was $\$ 130$, including the IM dose for nonresponders and postvaccination testing.

Report 3. In April 1989, a fire department in Quincy, Illinois, contracted with a private company to have recombinant hepatitis B vaccine administered to employees by the ID route using three $0.1-\mathrm{mL}$ doses. The average age of the 59 vaccinated employees was 40 years; all were male. The contractor reported that 14 (24\%) developed protective levels of anti-HBs. Nonresponders were vaccinated with one additional dose by the ID route; if adequate antibody titers did not develop, an additional dose by the same route was administered. Of the 45 employees who were vaccinated with either one or two additional doses, 41 (91%) developed protective levels of anti-HBs. The remaining four nonresponders were vaccinated with a second three-dose series by the ID route; postvaccination test results are pending. The second series cost an additional $\$ 105$ for each of the four nonresponders; the overall average cost for the vaccination program was $\$ 132$ per employee.

Report 4. In 1988, the Santa Barbara, California, fire department contracted with a private company to have hepatitis B vaccine administered to employees. The contractor vaccinated 44 of the 87 male and all nine female employees (average age of vaccinees: 33 years) with three $0.1-\mathrm{mL}$ doses of recombinant hepatitis B vaccine by the ID route. Postvaccination testing indicated that 21 (40%) employees developed protective levels of anti-HBs. Because of the low response rate after ID vaccination, the remaining 43 male employees (average age: 33 years) were vaccinated by the IM route; after three vaccine doses, protective levels developed in 41 (95%) persons.
Reported by: M Tant, Tuscaloosa Fire Dept, Tuscaloosa, Alabama. R Gerkin, MD, Phoenix Fire Dept, Phoenix; SJ Englender, MD, State Epidemiologist, Arizona Dept of Health Svcs. M Lugo, Santa Barbara Fire Dept, Santa Barbara; RR Roberto, MD, GW Rutherford, MD, State Epidemiologist, California Dept of Health Svcs. P Fowle, Fairhaven Board of Health, Fairhaven, Massachusetts. W Twaddle, J Beebe, Fire Dept, Quincy, Illinois. Hepatitis Br, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC.
Editorial Note: Infection with hepatitis B virus is an occupational risk for persons who have direct contact with blood or body fluids (2). CDC has recommended that health-care workers who have contact with blood or body fluids use universal precautions and that workers with occupational exposure to blood be vaccinated with hepatitis B vaccine (3). Regulations regarding these recommendations have been proposed by the Occupational Safety and Health Administration (4).

Some organizations have attempted to decrease the cost of employee hepatitis B vaccination by administering $1 / 10$ the recommended IM vaccine dose by the ID route; however, hepatitis B vaccine is not licensed by the FDA for ID administration. In addition, ACIP recommends that hepatitis B vaccine be administered by the ID route only when a research protocol is used that includes informed consent from vaccinees and postvaccination antibody testing to detect nonresponders, who would then be eligible for revaccination (1).

Intradermal Hepatitis B Vaccination - Continued
In general, plasma-derived hepatitis B vaccine has induced seroconversion in similar proportions of vaccinees when vaccine has been administered by the IM and ID routes (5). However, immune responses to recombinant vaccine have not been equivalent after IM and ID vaccination. At least four studies have directly compared the immunogenicity of $1.0-\mathrm{mL}$ doses of recombinant vaccine administered by the $I \mathrm{M}$ route to $0.1-\mathrm{mL}$ doses administered by the ID route; in three of these, a greater proportion of vaccinees were protected after three IM doses (94\%-97\%) than after three ID doses ($55 \%-78 \%$) (6-8). In one study, the immune response was equivalent in both the IM and ID groups (9); however, the gender composition of these groups differed.

Age- and sex-specific variations in immune response may partially account for the poor immune responses to ID vaccination programs described in this report. In previous studies of recombinant vaccine, a smaller proportion of men ($64 \%-71 \%$) than women ($87 \%-92 \%$) responded to ID vaccination (6,10); in addition, both IM and ID vaccination routes induce better immune responses in younger vaccinees (10). Because of the generally poor immune response to ID vaccination and the demographic composition of public safety workers (e.g., some groups may consist predominantly of men, many of whom may be >40 years of age), ID vaccination for public safety workers is not recommended. In comparison, the findings from Santa Barbara indicate that the recommended IM route of administration can induce excellent levels of protection against hepatitis B infection among public safety workers. In addition, the suitability of this approach was demonstrated by a program in Phoenix, Arizona, when in 1988 the Phoenix fire department vaccinated 820 male and 30 female employees with hepatitis B vaccine by the $I M$ route (average age of vaccinees: 32 years). Of the 850 vaccinated persons, 803 (94%) developed protective levels of anti-HBs at a cost of \$140 per employee, including postvaccination testing.

Because ID administration of hepatitis B vaccine induces a poor immune response, especially in older men, any potential savings in costs resulting from ID administration of $1 / 10$ the recommended vaccine dose will likely be negated by the costs of required postvaccination testing and additional vaccination of nonresponders. Assuming a full retail cost of $\$ 130$ for three $1.0-\mathrm{mL}$ doses of vaccine and a $\$ 10$ cost for administration, the cost of IM vaccination is approximately $\$ 140$ per vaccinee. Postvaccination antibody testing, which can add to the cost, should be considered for health-care workers at risk for percutaneous or permucosal exposure (1), although such testing may not be needed for others at lower occupational risk for hepatitis B.

ACIP has not recommended the ID administration of hepatitis B vaccine, and FDA has not licensed hepatitis B vaccine for ID administration. Moreover, ID vaccination programs offered by private contractors do not offer substantial cost savings over IM vaccination and may fail to induce immunity in a substantial proportion of vaccinees. For these reasons, vaccination programs should not use the ID route of administration.

References

1. ACIP. Protection against viral hepatitis: recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR 1990;39(no. RR-3):5-22.
2. Hadler SC. Hepatitis B virus infection and health care workers. Vaccine 1990;8(suppl):S24-8.
3. CDC. Guidelines for prevention of transmission of human immunodeficiency virus and hepatitis B virus to health-care and public-safety workers. MMWR 1989;38(no. S-6):9-10,12.
4. US Department of Labor, Occupational Safety and Health Administration. Occupational exposure to bloodborne pathogens: proposed rule and notice of hearing. Federal Register 1989;54:23042-139.
5. Zuckerman AJ. Appraisal of intradermal immunisation against hepatitis B. Lancet 1987; 1:435-6.
6. Gonzales ML, Usandizaga M, Alomar P, et al. Intradermal and intramuscular route for vaccination against hepatitis B. Vaccine 1990;8:402-5.
7. Wistrom J, Settergren B, Gustafsson A, Juto P, Norrby RS. Intradermal vs. intramuscular hepatitis B vaccinations [Letter]. JAMA 1990;264:181-2.
8. Bryan JP, Sjogren M, Iqbal M, et al. Comparative trial of low-dose, intradermal, recombinant- and plasma-derived hepatitis B vaccines. J Infect Dis 1990;162:789-93.
9. Parish DC, Muecke HW, Joiner TA, Pope WT, Hadler SC. Immunogenicity of low-dose intradermal recombinant DNA hepatitis B vaccine. South Med J 1991;84:387-94.
10. Morris CA, Oliver PR, Reynolds F, Selkon JB. Intradermal hepatitis B immunization with yeast-derived vaccine: serological response by sex and age. Epidemiol Infect 1989;103: 402-5.

Current Trends

Childhood Cancers - New Jersey, 1979-1985

In New Jersey, cancers among children aged 0-14 years account for fewer than 1\% of all cancers diagnosed annually; however, childhood cancers account for the greatest number of years of potential life lost from cancer. This report summarizes a study by the New Jersey State Department of Health (NJSDH) that determined the incidence and death rates for the most frequent cancers among children aged 0-14 years in New Jersey during 1979-1985; these rates are compared with those for the United States for a comparable period.

Incidence data were obtained from the New Jersey State Cancer Registry. The childhood cancer incidence data analyzed included the most frequent cancers among children reported to the NJSDH from hospitals, laboratories, and private practitioners, and cases identified through review of New Jersey death certificates. The mortality data were extracted from the state's vital statistics mortality data tapes. Incidence and death rates were age-adjusted to the 1970 U.S. population. National estimated incidence rates were obtained from the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute*; death rates were based on national data and were age-adjusted to the 1970 U.S. population (1).

From 1979 through 1985, incidence rates of childhood cancers remained relatively stable in New Jersey, while death rates decreased steadily (Figure 1). Although incidence rates for total childhood cancer in New Jersey were higher than the national rates, death rates for New Jersey were virtually identical to U.S. rates.

During the 7 -year period, cancer was diagnosed annually in an average of 240 children in New Jersey, most (83%) of whom were white. Each year, an average of 64 children died from cancers-leukemia (31% of deaths), brain and central nervous system cancers (20\%), lymphomas (11\%), renal cancer (6\%), bone and joint cancer (4%), eye and orbit cancer (3%), and all other cancers (24%). This distribution is

[^1]
Childhood Cancers - Continued

similar to that for cases observed in the SEER Program, which identified an average of 7800 cases of childhood cancers yearly. During the 7 -year period, death rates from lymphomas decreased among children in the United States and in New Jersey.
Reported by: ME Petrone, MD, DM Harlan, MS, HC Lewis, MPH, T Abe, MSW, Div of Epidemiology and Communicable Disease Control, Cancer Registry and Data Applications Programs, WE Parkin, DVM, K Spitalny, MD, State Epidemiologist, New Jersey State Dept of Health.
Editorial Note: Although the overall incidence of cancer is low among children, cancer is the major cause of deaths attributed to disease in children in the United States (2). During 1950-1985, the incidence rate of childhood cancers increased by 32%, while the death rate decreased $56 \%(1)$-primarily because of advances in treatment of many forms of childhood cancers. In 1991, an estimated 7800 new cases of childhood cancers will occur in the United States, and approximately 1500 children will die from cancers (2).

New Jersey accounts for approximately 3.7% of the estimated 7800 childhood cancers that occur annually in the United States. Although the incidence rate of childhood cancers in New Jersey was higher than that of the United States, similarities in death rates suggest that health-care providers and programs in New Jersey have been successful in aggressively screening, identifying, and treating childhood cancers.

The NJSDH shares cancer registry data and collaborates with other institutions in the state to address childhood cancers and other diseases. For example, the New Jersey Pediatric Hematology Oncology Network has collaborated with the NJSDH to develop a statewide neonatal hemoglobinopathy screening program (3). Five institutions have been designated as regional treatment centers to confirm initial screening diagnosis, educate parents about the diseases, and provide comprehensive treatment for sickle cell disease and other hemoglobinopathies. In addition, the state, local, professional, and community pediatric networks have assisted in clarifying the
(Continued on page 579)
FIGURE 1. Annual age-adjusted incidence and death rates* of childhood cancers New Jersey, 1979-1985, and United States, 1973-1985

[^2]FIGURE I. Notifiable disease reports, comparison of 4 -week totals ending August 17, 1991, with historical data - United States

*Ratio of current 4-week total to the mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

TABLE I. Summary - cases of specified notifiable diseases, United States, cumulative, week ending August 17, 1991 (33rd Week)

	Cum. 1991		Cum. 1991
AIDS	27,882	Measles: imported	148
Anthrax		indigenous	7,809
Botulism: Foodborne	11	Plague	1
Infant	39	Poliomyelitis, Paralytic*	
Other	4	Psittacosis	56
Brucellosis	45	Rabies, human	
Cholera	15	Syphilis, primary \& secondary	25,582
Congenital rubella syndrome	13	Syphilis, congenital, age <1 year	12
Diphtheria	2	Tetanus	26
Encephalitis, post-infectious	57	Toxic shock syndrome	193
Gonorrhea	366,131	Trichinosis	55
Haemophilus influenzae (invasive disease)	2,023	Tuberculosis	13,927
Hansen Disease	96	Tularemia	101
Leptospirosis	38	Typhoid fever	239
Lyme Disease	4,759	Typhus fever, tickborne (RMSF)	356

[^3]TABLE II. Cases of selected notifiable diseases, United States, weeks ending August 17, 1991, and August 18, 1990 (33rd Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonorrhea		Hepatitis (Viral), by type				Legionellosis	Lyme Disease
			Primary	Post-infectious			A	B	NA,NB	Unspecified		
	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1991 \end{aligned}$
UNITED STATES	27,882	6,268	495	57	366,131	428,738	15,096	10,438	1,859	815	715	4,759
NEW ENGLAND	1,007	623	20	1	8,801	11,593	368	559	52	23	47	981
Maine	38	25	3	-	113	136	16	15	2	.	2)
N.H.	27	62	3	.	154	139	23	17	5	-	3	25
Vt.	15	167	3	-	37	35	20	6	5	-	2	4
Mass.	589	158	9	1	3,544	4,729	182	391	28	20	37	92
R.I.	39	204	-	-	731	710	68	19	10	3	3	103
Conn.	299	7	2	-	4,222	5,844	59	111	2	.	.	757
MID. ATLANTIC	7,865	837	37	11	43,224	58,227	1,392	913	183	15	197	2,802
Upstate N.Y.	940	423	17	7	8,139	8,661	586	365	113	9	70	1,804
N.Y. City	4,680	127	-	-	15,441	25,160	436	115	5	.	20	,
N.J.	1,491		-	-	7,456	9,657	176	221	37	-	21	528
Pa.	754	287	20	4	12,188	14,749	194	212	28	6	86	470
E.N. CENTRAL	1,848	1,118	144	7	67,170	81,057	1,951	1,216	302	39	148	139
Ohio	366	432	57	2	20,885	24,270	264	277	133	16	75	81
Ind.	182	114	12	1	7,314	6,936	280	159	1	1	13	7
III.	849	200	39	4	20,008	25,995	812	173	41	3	15	5
Mich.	337	345	33	-	14,989	18,200	207	362	79	19	31	46
Wis.	114	27	3	-	3,974	5,656	388	245	48	.	14	.
W.N. CENTRAL	747	358	29	7	18,172	22,030	1,541	451	198	18	32	146
Minn.	141	48	16	-	1,835	2,678	250	48	12	2	5	30
lowa	66	78	-	4	1,253	1,599	38	32	8	3	9	12
Mo.	437	172	9	3	11,124	13,166	421	297	173	8	11	98
N. Dak.	4	2	1	-	30	87	32	4	2	1	1	.
S. Dak.	1	5	2	-	221	144	569	4	1	.	3	
Nebr.	38	18	-	-	1,151	1,113	167	24	1	-	3	
Kans.	60	35	1	-	2,558	3,243	64	42	1	4	.	6
S. ATLANTIC	6,727	1,221	97	23	112,390	122,032	1,092	2,170	261	162	121	343
Del.	53	36	2	1	1,681	1,943	7	31	4	2	2	35
Md.	626	111	16	1	11,357	13,462	194	265	47	13	25	125
D.C.	454	40	1	-	6,092	8,370	53	101	1	1	5	125
Va .	484	161	25	3	10,807	11,470	110	124	22	110	7	76
W. Va.	39	17	9	-	771	777	16	37	2	7	-	21
N.C.	319	137	23	-	22,827	19,310	113	333	92	.	14	50
S.C.	210	30	-	-	9,048	97,664	28	464	16	3	24	5
Ga .	953	186	7	2	26,994	27,040	137	333	33	3	13	18
Fla.	3,589	503	14	17	22,813	29,996	434	482	44	26	31	12
E.S. CENTRAL	642	466	24	-	35,842	35,950	150	872	236	3	39	77
Ky.	107	97	6	-	3,798	4,224	22	119	5	2	15	29
Tenn.	217	142	13	-	12,579	10,973	94	646	212	2	10	36
Ala.	197	199	5	-	10,449	11,963	28	98	15	1	13	12
Miss.	121	28	-	-	9,016	8,790	6	9	4	1	1	12
W.S. CENTRAL	2,587	866	57	1	40,955	46,623	2,133	1,397	77	163	28	51
Ark.	113	48	19	.	5,175	5,563	2, 206	1,30	2	5	7	16 16
La.	482	85	10	-	9,765	8,563	86	202	6	5	5	16
Okla.	112	2	3	-	4,349	4,012	183	148	33	12	7	26
Tex.	1,880	731	25	1	21,666	28,485	1,658	977	36	141	9	26 8
MOUNTAIN	778	119	12	2	7,706	8,894	2,413	650	98	100	53	10
Mont.	21	8	1	.	68	, 113	2,43	49	4	5	5 2	10
Idaho	12	-	-	-	93	87	64	51	1	5	3	
Wyo.	11	-	-	-	61	116	90	6	1	-	3	8
Colo.	304	38	3	1	2,149	2,341	379	94	40			8
N. Mex.	59	13	-	-	2,703	2,802	616	143	4	27	11	
Ariz.	148	33	8	1	2,908	3,481	769	120	14	40		
Utah	76	12	-	-	2, 206	- 269	198	53	11	11	20 4	
Nev.	147	15	-	-	1,518	1,685	234	134	19	1	11	2
PACIFIC	5,681	660	75	5	31,871	42,332	4,056	2,210	452	292	50	210
Wash.	352	-	6	1	2,773	3,746	-391	2,210	100	17	2	$\begin{array}{r}210 \\ \hline\end{array}$
Oreg.	166	$0{ }^{-}$	7	-	1,298	1,651	252	209	79	8	2	1
Calif.	5,036	601	67	4	26,785	35,726	3,306	1,659	256	266	44	209
Alaska	15	25	2	-	513	774	3,34	1,65	+13	1	4	209
Hawaii	112	34		-	502	435	23	32	4	1	2	-
Guam	2	77	-	-	-	178	-	.	.	-	.	
P.R.	1,029	173	2	2	390	460	69	310	138	39	-	
V.I.	12	,	2	2	265	268	1	8	138	39	-	-
Amer. Samoa	-	-	-	-	265	53	1	8	-	-	-	-
C.N.M.I.	-	-	-	-	-	148	-	-	-	-	-	-

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending August 17, 1991, and August 18, 1990 (33rd Week)

Reporting Area	Malaria	Measles (Rubeola)					Meningococcal Infections	Mumps		Pertussis			Rubella		
		Indigenous		Imported*		Total Cum. 1990									
	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	1991	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	1991	$\begin{aligned} & \text { Cum. } \\ & 1991 \end{aligned}$		$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	1991	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	1991	$\begin{array}{\|l\|} \hline \text { Cum. } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$	1991	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$
UNITED STATES	681	70	7,809	5	148	18,854	1,431	46	2,912	58	1,382	2,278	1	1,072	768
NEW ENGLAND	46	-	50	-	11	280	105	1	22	6	211	252	-	4	8
Maine	1	-	2	-	-	29	8	-	-	.	46	10	-	.	1
N.H.	2	-	-	-	-	8	12	\bullet	3	-	17	31	-	1	1
Vt.	2	-	5	-	-	1	12	1	3	1	4	6	-	-	.
Mass.	22	-	23	-	9	24	57	-	1	4	127	188	.	2	2
R.I.	7	-	2	-	-	30	-	-	3	-	-	2	-		1
Conn.	12	-	18	-	2	188	16	-	12	1	17	15	-	1	3
MID. ATLANTIC	98	25	4,239	-	6	1,278	145	-	205	1	112	351	-	559	5
Upstate N.Y.	28	-	, 325	-	4	311	78	-	78	1	79	268	.	537	4
N.Y. City	35	25	1,650	-	-	306	8	-	-	-	-	-	-		.
N.J.	26	-	730	-	1	290	30	-	54	-	1	26	-	-	-
Pa .	9	-	1,534	-	1	371	29	-	73	-	32	57	-	22	1
E.N. CENTRAL	57	-	67	-	11	3,490	224	-	264	3	228	627	-	174	30
Ohio	13	-	1	-	2	537	76	-	60	3	85	118	-	147	1
Ind.	3	-	-	-	2	411	17	-	6	-	50	83	-	1	-
III.	23	i	25	-	-	1,319	66	-	103	-	41	236	-	5	18
Mich.	16	U	39	U	-	473	46	U	79	U	23	55	U	20	9
Wis.	2	-	2	-	7	750	19	-	16	-	29	135	U	1	2
W.N. CENTRAL	21	-	30	-	5	797	80	-	86	2	102	108	-	16	14
Minn.	6	-	5	-	5	321	17	-	13	-	41	21	-	6	9
lowa	4	-	15	-	-	26	8	-	15	1	13	15	-	5	4
Mo.	6	-		-	.	97	29	-	26	1	32	59	.	5	.
N. Dak.	1	-	-	-	-	-	1	-	2	-	2	2	-	.	1
S. Dak.	-	-	-	-	-	23	2	-	1	-	3	1	-	.	.
Nebr.	-	-	1	-	-	106	6	-	5	-	5	3	.	-	-
Kans.	4	-	9	-	-	224	17	-	24	-	6	7	-	-	-
S. ATLANTIC	144	5	428	1	18	1,073	264	6	1,038	10	155	183	-	12	18
Del.	2	-	21 175	it	1	11	2		6		,	6	.	12	18
Md.	41	-	175	$1 \dagger$	1	210	29	3	199	5	39	47	.	6	2
D.C.	9	-	-	-	-	22	7	-	21	.	-	14	.	1	1
Va .	25	-	24	-	4	72	26	-	43	-	16	15	.	1	1
W. Va.	2	\bullet	-	-	-	6	12	-	16	-	8	14	-	-	.
N.C.	11	1	36	-	3	30	49	-	214	-	22	40	-	2	-
S.C.	8	1	13	-	-	4	27	1	344	1	10	5	-	2	
Ga.	16	4	10	-	4	184	54	2	38	4	28	24	-		-
Fla.	30	4	149	-	6	534	58	2	157	4	32	18	-	3	14
E.S. CENTRAL	13	-	6	-	1	150	95	-	155	2	49	105	-	100	
Ky.	2	-	1	-	1	32	35	.	155	2	49	105	-	100	3
Tenn.	7	-	5	-	-	70	28	-	127	-	17	45	-	100	3
Ala.	4	-	-	-	-	22	31	-	8	2	32	54	-	100	3
Miss.	-	\cdot	-	-	-	26	1	-	20	2	32	6	-		-
W.S. CENTRAL	45	3	148	\bullet	14	4,009	108		317	2					
Ark.	5 9	-	-	-	5	4,009 42	16	1	$\begin{array}{r}40 \\ \hline 10\end{array}$	2	42 4	76 3	-	5 1	66 3
La.	9	-	-	\bullet	-	10	23	.	21	1	11	19	-	1	3
Okla.	${ }_{6}^{6}$	3	148^{-}	-	-	173	13	-	12	1	21	26	-		1
Tex.	25	3	148	-	9	3,784	56	21	244	1	6	28	-	4	62
MOUNTAIN	27	3	933	2	19	844	57	6	280	11	153	199	.	6	
Mont.	1	3	397	-	2	1	9	6		1	2		-	6	13
Idaho	2	3	397	-	2	26	7	-	8	2	23	26 36	-	2	13 49
Wyo.	8	-	1	11	2	15	1	-	3	2	3	36	-	2	49
Colo.	8	-	1	$1+$	5	133	11	4	118	3	69	75	-		4
N. Mex.	6	-	117		5	93	8	N	N	1	69 23	75 14	-	-	4
Ariz.	8	-	274	-	,	286	15	2	126	1	23 8	14 34	\cdot		30
Utah	1	-	125	-	4	78	1	2	13	5	88	34 10	-	-	30
Nev.	1	-	18	$1 \S$	1	212	6	-	12	5	23 2	10 4	-	4	1 8
PACIFIC	230	34	1,908	2	63	6,933	353	11	545	21	330	377	1		
Wash.	17	-	46	-	15	254	44	9	150	1	82	$\begin{array}{r}87 \\ \hline\end{array}$	1	196	519
Oreg.	5	34	41 1.817	$1+$	29	+212	45	N	N	6	48	41	-	8 2	9
Calif.	204	34	1,817	$1+$	12	6,375	255	2	366	12	153	215	i	182	9 500
Alaska	4	-	4	$1+$	3	80	7	2	10	12	12	215 4	1	182	500
Hawaii	4	-	4	$1 \dagger$	4	12	2	-	19	2	35	30	-	3	10°
Guam	-	U	-	U	-	1	-	U	-	U	-		U		
P.R.	1	2	93	-	1	1,444	15	U	9	U	32	6	U	5	-
V.I.	2	U	-	U	2	23		U	8	U	32	6	U	1	-
Amer. Samoa	2	\cup	-	\cup	2	377	.	U	8	U	-	-	U		-
C.N.M.I.	-	U	-	U	-	-	-	U	-	U	-	4	U		-

*For measles only, imported cases includes both out-of-state and international importations.
N : Not notifiable

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending August 17, 1991, and August 18, 1990 (33rd Week)

Reporting Area	Syphilis(Primary \& Secondary)		Toxicshock	Tuberculosis		Tularemia Cum. 1991	Typhoid Fever Cum. 1991	Typhus Fever (Tick-borne) (RMSF) Cum. 1991	Rabies, Animal Cum. 1991
	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1991 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1990 \end{aligned}$				
UNITED STATES	25,582	30,888	193	13,927	14,591	101	239	356	3,913
NEW ENGLAND	670	1,140	10	360	321	1	27	5	35
Maine		5	4	27		-	1	-	-
N.H.	12	44	1	5	3	-	1	-	1
Vt .	1	1	-	4	7	-	.	-	-
Mass.	309	440	5	179	172	1	24	4	-
R.I.	37	11	.	27	43	-	-	-	-
Conn.	311	639	-	118	96	-	1	1	34
MID. ATLANTIC	4,117	6,218	30	3,183	3,538	1	43	8	1,301
Upstate N.Y.	103	552	14	209	277	1	9	6	465
N.Y. City	2,042	2,882	1	1,984	2,231	-	21	-	
N.J.	857	1,013	-	559	575	-	10	1	596
Pa.	1,115	1,771	15	431	455	-	3	1	240
E.N. CENTRAL	2,984	2,143	39	1,414	1,379	4	14	28	84
Ohio	400	345	19	201	236	-	2	17	11
ind.	94	53	-	119	120	-	-	7	7
III.	1,399	865	12	755	700	2	4	3	17
Mich.	770	642	8	273	267	2	7	1	17
Wis.	321	238	-	66	56	-	1	-	32
W.N. CENTRAL	458	317	32	329	362	37	2	27	571
Minn.	46	54	7	62	65	1	2	-	198
lowa	40	39	6	49	38	-	-	1	109
Mo.	325	164	10	143	174	31	-	16	11
N. Dak.	-	1	-	4	15	-	-	-	67
S. Dak.	1	1	1	25	9	4	-	1	140
Nebr.	11	8	1	11	15	-	-	4	11
Kans.	35	50	7	35	46	1	-	5	35
S. ATLANTIC	7,831	9,975	17	2,678	2,699	4	47	153	939
Del.	98	109	1	17	29	-	-	.	103
Md.	626	730	1	248	211	-	8	19	355
D.C.	494	649	1	123	96	-	2		7
Va .	575	593	3	224	234	-	8	6	175
W. Va.	20	11	-	44	48	-	1	4	42
N.C.	1,237	1,145	7	358	352	1	2	77	8
S.C.	980	640	1	256	301	1	3	28	66
Ga.	1,929	2,536	-	531	439	1	5	18	159
Fla.	1,872	3,562	3	877	989	1	18	1	24
E.S. CENTRAL	2,860	2,669	9	1,004	1,058	11	2	66	115
Ky.	55	57	4	219	258	4	2	19	33
Tenn.	997	1,063	5	323	277	6	.	35	29
Ala.	1,008	819	-	243	322	1	-	12	53
Miss.	800	730	-	219	201	-	-	-	
W.S. CENTRAL	4,625	5,133	7	1,653	1,791	30	16	61	442
Ark.	386	360	3	145	223	20	-	11	26
La.	1,612	1,588	-	155	201	-	3	,	4
Okla.	111	150	4	112	124	10	-	50	127
Tex.	2,516	3,035	-	1,241	1,243	.	13	50	285
MOUNTAIN	357	564	25	377	324	9	6		
Mont.	6	-	-	6	22	7	,	5	26
Idaho	3	6	-	4	8	-			1
Wyo.	6	1	-	3	4	1	-	-	59
Colo.	55	37	5	33	13	1	1	1	10
N. Mex.	21	29	6	48	74	-	.	1	2
Ariz.	225	400	4	207	146	-	4	-	25
Utah	5	6	10	30	18	-	4	-	25
Nev .	36	85	-	46	39	-	1	-	4
PACIFIC	1,680	2,729	24	2,929	3,119	4	82	2	
Wash.	111	263	3	186	172	2	4	1	1
Oreg.	51	94	-	69	82	1	3	1	4
Calif.	1,510	2,345	21	2,511	2,718	1	72	1	285
Alaska	4	12	21	2,51	$\begin{array}{r}2,718 \\ \hline 112\end{array}$	1	72	-	285 3
Hawaii	4	15	-	128	112	-	3	-	1
Guam	- ${ }^{\circ}$	2	-	-	32	-	.	-	-
P.R.	298	204	-	141	66	-	9	-	41
V.I.	75	6	-	2	4	-	-	-	4
Amer. Samoa	-	-	-	2	11	-	-	-	-
C.N.M.I.	-	3	-	-	40	-	-	-	-

TABLE III. Deaths in 121 U.S. cities,* week ending August 17, 1991 (33rd Week)

Reporting Area	All Causes, By Age (Years)						$\left\|\begin{array}{l} \text { P\& } 1^{* *} \\ \text { Total } \end{array}\right\|$	Reporting Area	All Causes, By Age (Years)						$\left\{\begin{array}{l} \text { P\&I** } \\ \text { Total } \end{array}\right.$
	All Ages	$\geqslant 65$	45-64	25-44	1-24	<1			All Ages	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND	547	369	103	42	17	16	25	S. ATLANTIC	1,301	754	283	159	49	53	58
Boston, Mass.	133	83	28	16	4	2	7	Atlanta, Ga.	142	83	35	16	5	3	2
Bridgeport, Conn.	28	19	5	2		2	1	Baltimore, Md.	210	116	55	27	8	4	12
Cambridge, Mass.	24	16	8	-	-	-	3	Charlotte, N.C.	69	41	16	9		2	2
Fall River, Mass. Hartford, Conn.	27	20	4 10	10		2		Jacksonville, Fla.	129	85	32	9	2	1	5
Hartford, Conn. Lowell, Mass.	57 22	33 19	10	10	2	2	-	Miami, Fla.	102	46	30	19	1	5	,
Lowell, Mass.	22	19 15	3	-		-	1	Norfolk, Va.	68	39	13	7	5	4	5
New Bedford, Mass.	21	14	4	2	1	-	1	Richmond, Va.	85	53	19	8	3	2	4
New Haven, Conn.	42	26	10	2	2	3	2	Savannah, Ga.	49	27	12	8	2		4
Providence, R.I.	37	29	6	2	2	3	1	St. Petersburg, Fla.	66	46	6	6	3	5	7
Somerville, Mass.	9	8	6	2	-		2	Wampa, Fla.	130	86	22	11 39	3	6	17
Springfield, Mass.	52	32	9	2	6	3	2	Wilmington, Del.	228 23	112 20	3	39	6	21	6
Waterbury, Conn.	26	18	5	2	1	3	2	Wilmington, Del.	23	20	3				
Worcester, Mass.	53	37	10	2	1	3	6	E.S. CENTRAL	779	508	142	70	30	29	46
MID. ATLANTIC	2,163	1,374	415	263	43	68	103	Birmingham, Ala.	113	70	23	8	6	6	2
Albany, N.Y.	56	, 34	11	5	1	5	4	Chattanooga, Te	69	49	11	4	3	2	2
Allentown, Pa.	23	14	7	2	1	5	4	Knoxville, Tenn. Louisville, Ky.	78 138	46	18	9	4	1	5
Buffalo, N.Y.	100	75	17	7		1	4		138	95 103	24	11	2	7	9 9
Camden, N.J.	34	17	8	3	1	5	1	Memphis, Tenn. Mobile, Ala.	156 65	103	27	14	5	7	14
Elizabeth, N.J.	22	11	4	3	1	4	1	Mobile, Ala.	65	41	10	10	2	2	2
Erie, Pa. \dagger	51	42	7	1	1	4	2	Montgomery, Ala. Nashville, Tenn.	39 121	26 78	5 24	3 11	1	4	${ }_{10}^{2}$
Jersey City, N.J.	53	35	8	6	1	3	3	Nashville, Tenn.	121	78	24	11	7	1	10
New York City, N.Y.	1,002	596	204	159	28	15	36	W.S. CENTRAL	1,117	693	206	107	61	50	39
Newark, N.J.	65	29	14	19	.	3	2	Austin, Tex.	53	35	11	5	1	1	4
Paterson, N.J.	31	18	5	7	.	1	4	Baton Rouge, La.	42	24	11	2	1	4	-
Philadelphia, Pa.	296	188	61	30	4	13	13	Corpus Christi, Tex.	35	28	5	-	1	1	1
Pittsburgh, Pa.t	89	54	17	5	2	11	4	Dallas, Tex.	199	110	45	23	16	5	-
Reading, Pa.	35	29	6	-	.	.	4	El Paso, Tex.	58	42	6	5	1	4	1
Rochester, N.Y.	111	80	18	6	2	5	9	Ft. Worth, Tex.	88	49	14	8	6	11	4
Schenectady, N.Y.	21	18	2	-	1	5	1	Houston, Tex.	124	74	18	13	13	6	6
Scranton, Pa. \dagger	25	20	4	1	.	-	1	Little Rock, Ark.	56	40	12	3	1	-	3
Syracuse, N.Y.	79	62	12	2	2	1	3	New Orleans, La.	78	38	16	6	3	15	-
Trenton, N.J.	28	21	4	3	2	1	6	San Antonio, Tex.	219	139	36	26	15	3	8
Utica, N.Y.	17	13	3	1	.	-	6	Shreveport, La.	67	54	8	3	2	.	6
Yonkers, N.Y.	25	18	3	3	-	1	2	Tulsa, Okla.	98	60	24	13	1	-	6
E.N. CENTRAL	2,186	1,345	397	224	153	67	105	MOUNTAIN	629	372	139	67	31	20	33
Akron, Ohio	71	55	10	3	2	1	1	Albuquerque, N.M.	75	52	12	7	3	1	4
Canton, Ohio	34	27	7	-		1	1	Colo. Springs, Colo.	35	24	7	3	-	1	2
Chicago, III.	445	187	87	78	75	18	13	Denver, Colo.	97	57	20	15	1	4	6
Cincinnati, Ohio	142	97	32	7	3	3	13	Las Vegas, Nev.	134	71	41	14	5	3	5
Cleveland, Ohio	145	82	31	17	8	7	2	Ogden, Utah	27	20	2	3	2	-	4
Columbus, Ohio	199	135	36	14	8	6	4	Phoenix, Ariz.	113	57	32	11	8	5	3
Dayton, Ohio	107	80	17	8	-	2	8	Pueblo, Colo.	21	13	3	1	2	2	2
Detroit, Mich.	228	118	47	37	17	9	3	Salt Lake City, Utah	41	24	4	5	7	1	3
Evansville, Ind.	40	28	8	3	1	-	4	Tucson, Ariz.	86	54	18	8	3	3	4
Fort Wayne, Ind.	69	47	8	6	5	3	1	PACIFIC							
Gary, Ind.	18	10	3	2		3	1	Berkeley, Calif.	1,829	1,153	343	174	95	56	92
Grand Rapids, Mich.	71 152	52	12	-	6	1	3	Berkeley, Calif. Fresno, Calif.	13 92	87	2	7	5	3	1 5
Indianapolis, Ind.	152	89	28	21	11	3	5	Fresno, Calif. Glendale, Calif	92	57	16	7	5	7	5
Madison, Wis.	46	30	7	3	2	4	6	Glendale, Calif. Honolulu, Hawaii	28	22	4	1	1	5	7
Milwaukee, Wis.	125	85	23	9	- 5	3	17	Honolulu, Hawaii	71	40	21	4	1	5	7
Peoria, III.	46	34	5	2	3	2	17 3	Long Beach, Calif. Los Angeles Calif.	70	47	9	6	5	3	3
Rockford, III.	53	39	8	5	3	1	5	Los Angeles, Calif. Oakland Califs	519	288	120	56	38	10	16
South Bend, Ind.	46	31	10	1	3	1	3	Oakland, Calif. $\$$ Pasadena Calif.	U	U	\bigcirc	U	U	U	U
Toledo, Ohio	90	70	13	5	2	.	8	Pasadena, Calif. Portland, Oreg	32	19	7	1	2	3	8
Youngstown, Ohio	59	49	5	3	2	-	2	Portland, Oreg. Sacramento Calif	111	84	12	6	6	3	8
W.N. CENTRAL	632	421	125	47	18	21	28	San Diego, Calif.	188	112	28 36	20	10 9	7	12
Des Moines, lowa	64	42	18	2	-	2	3	San Francisco, Calif.	151	91	30	24	3	2	4
Duluth, Minn.	20	15	4		-	1	1	San Jose, Calif.	135	99	24	24 3	7	2	9
Kansas City, Kans.	24	12	7	2	1	2	1	Seattle, Wash.	139	93	21	14	5	6	-
Kansas City, Mo.	112	75	22	12	2	1	6	Spokane, Wash.	44	37	4	1	2	6	4
Lincoln, Nebr. $\$$	U	U	U	U	U	U	\cup	Tacoma, Wash.	61	44	9	7	1	-	4
Minneapolis, Minn. Omaha, Nebr.	85 90	56 58	18	6	5		5	TOTAL	11,183 ${ }^{\text {t1 }}$	6,989					
Omaha, Nebr. St. Louis, Mo.	90 119	58 81	17	7	4	4	2		11,183	6,989	2,153	1,153	497	380	529
St. Paul, Minn.	119	81	20	8	4	6	6								
St. Paul, Minn.	72	54	9	4	1	4	4								
Wichita, Kans.	46	28	10	6	1	1	-								

[^4]Childhood Cancers - Continued
epidemiology of childhood cancers in New Jersey. Parents can assist in early detection of childhood cancers by ensuring that children are evaluated for problems such as unexplained fatigue or fever, frequent headaches, unusual masses or swelling, increased bruising, and unexplained weight loss (2).
References

1. National Institutes of Health. 1987 Annual cancer statistics review. Bethesda, Maryland: US Department of Health and Human Services, Public Health Service, 1988; NIH publication no. 87-2789.
2. American Cancer Society. Cancer facts and figures-1991. Atlanta: American Cancer Society, 1991.
3. Donaldson MH. New Jersey pediatric hematology oncology. NJ Med 1990;87:927-30.

Comparative Mortality of Two College Groups, 1945-1983

Patterns of morbidity and mortality vary substantially among some religious groups in the United States. These variations may be associated with a wide range of factors, including lifestyle, acceptance of prevention measures (e.g., vaccination), and risks for injury (1-12). This report summarizes a study of mortality in cohorts of graduates from two colleges whose students are from different religious backgrounds.

The populations in this study included graduates of Principia College (PC) (Elsah, Illinois), a liberal arts college for Christian Scientists, and Loma Linda University (LLU) (Loma Linda, California), a Seventh-day Adventist-affiliated university with a predominantly Seventh-day Adventist student population (A. Kutzner, Loma Linda University, personal communication, 1991). The doctrines of both religious groups require abstinence from alcohol consumption and smoking. Seventh-day Adventists are also required to abstain from consuming certain foods (e.g., pork and shellfish); in addition, the church recommends that its members use primarily a lacto-ovovegetarian diet that limits the consumption of meat, poultry, or fish to less than once per week. The groups also differ in that Christian Scientists reject medical healing in favor of spiritual healing alone (13), whereas Seventh-day Adventists accept both spiritual and medical healing (14).

This study compared mortality between the graduating classes of PC and LLU for 1945 (the first year for which data are available) through 1983.* Data for PC were obtained from alumni directories and quarterly updates that record deaths of graduates by year of graduation. The data for LLU were obtained from a search of the alumni database of the university's Alumni Office. PC graduates whose vital status was unknown were assumed to be alive. Mortality among LLU graduates whose vital status was unknown was assumed to be the same as that for graduates whose records existed. For each school, mortality was calculated for 3 -year cohorts for 1945-1983 for men and women. The analysis assumed that the mean matriculation age for students at both institutions was the same.

During the 39 -year period, a total of 2421 men and 2669 women graduated from PC, and 5010 men and 3788 women graduated from the College of Liberal Arts and

[^5]
Mortality - Continued

Sciences at LLU. Overall mortality was higher for PC graduates than for LLU graduates (for men, 40 per 1000 and 22 per 1000, respectively [$p<0.001$; Cochran-Mantel-Haenszel chi-square test], and for women, 27 per 1000 and 12 per 1000, respectively [$p=0.001$]) (Figures 1 and 2). Total mortality was higher among PC graduates in 22 (85%) of the 26 cohorts. However, for four of the cohorts, total mortality was higher among graduates of LLU (men: 1969-1971; women: 1963-1965, 1969-1971, and 1975-1977).
Reported by: WF Simpson, PhD, Emporia State Univ, Emporia, Kansas. Div of Surveillance and Epidemiology, Epidemiology Program Office, CDC.
Editorial Note: Previous reports have described differences in health status and disease patterns in religious groups in the United States. For example, prolonged outbreaks of measles, rubella, and poliomyelitis have been documented among the Amish (1-3) and Christian Scientists (4,5); in 1984, of all reported cases of measles classified as "nonpreventable," 89.2% occurred among persons exempt from vaccination laws for religious or philosophic reasons (6). Rates of congenital disorders are higher among the Amish (7), for whom injury related to horse-drawn buggies is also of concern (8). Perinatal and maternal mortality rates are higher for members of the Faith Assembly in Indiana who avoid prenatal and obstetric care than for other residents of the same state (9). Among Mormons, death rates are substantially lower for cancers, heart disease, and all causes combined compared with non-Mormons in Utah and whites in the United States (10,11). Finally, for male physician graduates of LLU, the age-adjusted death rate was 73% that of graduates of a nonreligiously affiliated medical school and 56% that of all white males in the United States (12).

The findings in this study indicated higher mortality among graduates of PC than among graduates of LLU's liberal arts college. Although these findings are consistent

FIGURE 1. Percentage of male graduates who have died, by 3-year cohort - Loma Linda University* and Principia College, 1945-1983

[^6]
Mortality - Continued

with a previous report (15), they may be subject to at least two biases. First, the assumption that PC graduates who were lost to follow-up were alive and that LLU graduates who were also lost to follow-up had the same risk for death as other graduates may have reduced the differences in mortality for the two groups. Second, because the dietary habits of Seventh-day Adventists are associated with lower risks for several chronic diseases, mortality related to chronic diseases was probably lower among LLU graduates than it would have been in other comparison populations.

For at least three potential reasons, religious affiliation may be related to health status: 1) persons with differing risk-factor profiles may seek membership in particular religious groups; 2) religions may prescribe or proscribe behavior associated with altered risk for disease (e.g., physical exercise, vaccination and other health-care practices, and prohibitions regarding smoking and diet); and 3) patterns of marriage may increase the risk for certain heritable disorders. Investigation of associations between religious affiliation and health status may assist in defining the etiology of different conditions and designing public health interventions appropriate to the health practices of specific groups.

References

1. CDC. Poliomyelitis - United States, Canada. MMWR 1979;28:229-30.
2. CDC. Increase in rubella and congenital rubella syndrome-United States, 1988-1990. MMWR 1991;40:93-9.
3. Sutter RW, Markowitz LE, Bennetch JM, Morris W, Zell ER, Preblud SR. Measles among the Amish: a comparative study of measles severity in primary and secondary cases in households. J Infect Dis 1991;163:12-6.
4. CDC. Follow-up on poliomyelitis-Connecticut, New York, Massachusetts, New Hampshire. MMWR 1972;21:365-6.

FIGURE 2. Percentage of female graduates who have died, by 3-year cohort - Loma Linda University and Principia College,* 1945-1983

*No deaths have been recorded among Principia students who graduated during 1969-1971.

Mortality - Continued
5. Novotny T, Jennings CE, Doran M, et al. Measles outbreaks in religious groups exempt from immunization laws. Public Health Rep 1988;103:49-54.
6. CDC. Measles-United States, 1984. MMWR 1985;34:308-12.
7. Khoury MJ, Cohen BH, Diamond EL, Chase GA, McKusick VA. Inbreeding and prereproductive mortality in the Old Order Amish. III. Direct and indirect effects of inbreeding. Am J Epidemiol 1987;125:473-83.
8. Jones MW. A study of trauma in an Amish Community. J Trauma 1990;30:899-902.
9. CDC. Perinatal and maternal mortality in a religious group-Indiana. MMWR 1984;33:297-8.
10. Lyon JL, Klauber MR, Gardner JW, Smart CR. Cancer incidence in Mormons and nonMormons in Utah, 1966-1970. N Engl J Med 1976;294:129-33.
11. Enstrom JE. Cancer and total mortality among active Mormons. Cancer 1978;42:1943-51.
12. Ullmann D, Phillips RL, Beeson WL, et al. Cause-specific mortality among physicians with differing life-styles. JAMA 1991;265:2352-9.
13. Eddy MB. Science and health with key to the scriptures. Boston: Christian Science Publishing Society, 1971:400.
14. Cross FL, Livingston EA, eds. The Oxford dictionary of the Christian church. London, England: Oxford University Press, 1974:1266.
15. Simpson WF. Comparative Iongevity in a college cohort of Christian Scientists. JAMA 1989;262:1657-8.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and is available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 783-3238.

The data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. Inquiries about the MMWR Series, including material to be considered for publication, should be directed to: Editor, MMWR Series, Mailstop C-08, Centers for Disease Control, Atlanta, GA 30333; telephone (404) 332-4555.

Director, Centers for Disease Control	Editor, MMWR Series
William L. Roper, M.D., M.P.H.	Richard A. Goodman, M.D., M.P.H.
Director, Epidemiology Program Office	Managing Editor, MMWR (Weekly)
Stephen B. Thacker, M.D., M.Sc.	Karen L. Foster, M.A.

ふU.S. Government Printing Office: 1991-531-130/42028 Region IV

LLO8-L6 (OロJ) 'ON uo!fe3!!qnd SHH

[^0]: *For the private contractors used in reports 1-4, the specific laboratory testing methods and the definition of adequate antibody response are not known.

[^1]: *The SEER Program comprises cases from nine population-based cancer registries throughout the United States.

[^2]: *Per 100,000 population.
 ${ }^{\dagger}$ Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.

[^3]: *Three suspected cases of poliomyelitis have been reported in 1991; none of the 8 suspected cases in 1990 have been confirmed to date. Five of the 13 suspected cases in 1989 were confirmed and all were vaccine associated.

[^4]: *Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or
 more. A death is reported by the place of its occurrence and by the week included.
 **Pneumonia and influenza.
 \dagger Because of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week Complete counts will be available in 4 to 6 weeks.
 $\dagger \dagger$ Total includes unknown ages.
 §Report for this week is unavailable (U).

[^5]: *Limitations in mortality data for any cohort later than 1983 precluded statistical analysis.

[^6]: *No deaths have been recorded among Loma Linda students who graduated during 1960-1962.

